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This study offers practical solutions to ongoing issues of trust and accountability in AI, highlighting 

how AI mental models are shaped among consumers in the evolving relationship between humans 

and AI. We argue that although predictability in AI is crucial, alone it is not enough to foster trust. 

The lack of real consequences for AI systems that breach trust remains a key challenge for 

interaction design. Until AI systems face tangible repercussions for trust violations, human trust will 

remain limited and conditional. Our research contributes to the development of socio-technologies that 

prioritize human capabilities and foster productive human-AI relationships. 

1. How Mental Models of AI Are Formed

Well before interacting with a product – marketing, ads, manuals, reviews,

cultural and other information can shape a person's expectations of what it can and 

cannot do. 

As AI capabilities are integrated into digital products we regularly use, we’ve 

become increasingly familiar and comfortable with predictive recommendations 

However, people are skeptical as well. Some users may even assume AI is involved 

without being told so even when it’s not.  

Mismatched mental models can lead a person to expect too much from a 

product that is still being improved, or expecting too little of a high-performing 

product. This can lead to unmet expectations, frustration, misuse, and product 

abandonment.  

Worse yet, it can erode user trust. 

This occurs when a product focuses on a feature's net benefits without 

explaining what the product can or cannot do, and how the product works. It occurs 

when teams ignore affordances or do not consider the user experience of earlier or 

similar versions of the feature. 

If users have formed a mental model of “AI magic” that can help them 

accomplish their task, they may overestimate expectations of what the product can 

actually do and be set up for disappointment from the reality of their experience.  

Taken together, our exploration of AI follows on a rich tradition of ethnographic 

analysis at EPIC into trust, governance, and possibility in high-profile technologies. 

Ethnographic analysis of advancements in technology is a central theme of EPIC. AI 



technologies, much like autonomous vehicles, translate human practices into 

machine learning algorithms. Vinkhuyzen and Cefkin considered the limitations of 

this act of conversion, which raised many of the same questions that users have 

about LLM-based AI technologies (Vinkhuyzen and Cefkin 2016). Elish explored 

applications of machine learning in healthcare, which explored new ways of building 

trust in AI/ML technologies (Eilish 2019). These thrust-forward approaches inform 

our methodology in studying developing trust conditions in technology.  

Other relevant EPIC work focused on decentralized finance and blockchain. 

These technologies are similar to AI in that they both experienced massive amounts 

of public attention (“hype”) and required a renewed look at how trust is built in new 

technologies. Nabben and Zargham examined how decentralized autonomous 

organizations (DAOs), governed by algorithms, refined and challenged core user 

ideas surrounding trust and governance (Nabben and Zargham 2022). Themes of 

imagination and exploration present in AI were also explored via NFTs by Silva, 

who used self-ethnography to explore new frontiers of human possibility (Silva 

2022). These past explorations contribute to our analysis of technology that received 

outsized public attention shortly after its introduction.  

My first exposure with AI was through films like Terminator and Black Mirror. 

These fictional narratives painted a very dramatic and dark picture. But everything 

changed when I first experienced personalized recommendations from my favorite 

streaming services. I was shocked when it felt like it knew me better than I know 

myself. What a powerful moment. That’s when I realized there’s a massive gap 

between my perception of AI and its reality. So I set to work researching how mental 

models of AI are formed and changed. Where are the gaps between our mental 

models of AI and AI’s true capabilities, and how can we bridge those gaps? 

Google’s AIUX team has identified three areas that influence how mental 

models of AI are formed, and how AI product teams can help shift that thinking 

toward a broader awareness of AI’s collaborative abilities. There are 3 major factors 

that influence people as they develop their mental models of AI: Cultural narratives, 

Prior Technology, and Social Cues.  
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Fig. 1. 

1.1 Cultural Narratives 

Culture is in the air we breathe. It is drawn from our preconceived notions of old 

things, changes our feelings about familiar things, and can condition us to love or 

fear new things. 

Much of popular culture is driven by the mainstream media and arts including 

films, and they are creating some very scary and confusing scenarios about AI. 

Classic science fiction stories such as Metropolis or Frankenstein, but also in movies 

and television programs such as Terminator, Space Odyssey, or the famous Netflix 

show Black Mirror recently. 

These are fictional tales and they exist in a fantasy world. Consumer perceptions 

are driven, shaped, and constrained, not only by the actual features of the AI, but 

also by highly emotional and fictional tales and stories.  

In mass media, conflicting views from opinion leaders adds to the confusion as 

well. AI products are typically seen as progressive upgrades to familiar technology, 

making them easier to adopt. However, there's a growing perception that AI could 

significantly disrupt society and initiate a new era. They either present AI as an 

existential threat, or they pass it off as a novelty. 

Mixed messages about the potential impact of AI in society and in everyday life 

is leading to a broader sentiment that this technology is a source of disruption. These 

narratives create uncertainty, leading people to seek more grounded, simpler 

interpretations of how to think about AI.  

Apprehension and uncertainty of AI has driven product managers and marketers 

to embrace the narrative that AI should just be thought of as a “tool.” While this 

message alleviates some of the fear, it also has the potential to limit and constrain the 

full potential of AI as being much more. 

People are hearing two competing narratives about the nature of AI & its 

potential impact on society. 
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Fig. 2. Two competing narratives about the nature of AI and its potential impact on society. 

How might we inspire realistic confidence to help users feel more comfortable with 

AI? That’s the question we should be asking in the public square.  

Creating a more transparent, informed public discourse about AI can combat the 

misinformation and confusion about it. 

1.2 Prior Tech Experiences 

Understanding what types of relevant technology users have experienced can 

help UX designers accelerate or hinder the changes in their mental models of AI. 

Sometimes, prior experience with seemingly similar technologies can actually impede 

the evolution of our mental models about it.  

When first encountering AI, users will turn to prior experiences with analogous 

technologies– and may apply their understanding of those mental models to AI. The 

one most commonly cited is the idea that Chatbots are “just like autocomplete.” 

While these prior mental models might accelerate understanding, they can also 

impede or diminish their willingness to explore AI more broadly. For instance, when 

our AIUX team demonstrated multimodal UX concepts for Google search, people 

associated their experience as a search tool rather than an AI-driven experience. 

There are four technologies that are shaping users’ mental models of AI: search 

engines, non-LLM chatbots, voice assistants, and recommendation systems. These 

technologies prime users to utilize some of AI’s different capabilities. For example, 
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those who inherited a search mental model tended to focus on AI’s information 

retrieval power. 

Fig. 3. Four types of previous technology that people are currently using to make sense of new AI products. 

Take a chatbot, for example. If your users are familiar with chatbots, they may 

understand some of the branching workflows chatbots rely on. These users will likely 

focus on inputting specific keywords, parsing their language based on what they 

believe are essential details needed to achieve the right outputs. 

Understanding someone’s familiarity with AI can help us predict how they are 

likely to interact with it, and what challenges and opportunities the UX will need to 

overcome to help users take advantage of AI’s capabilities. 

1.3 Social Cues 

Human beings are social, and we learn a great deal about our world through 

watching others’ behavior. When it comes to AI, our mental models are constantly 

being shaped by observing others.  
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Fig 4. Making sense of AI is a process of collective learning and social adjustment, not solo encountering. 

To change the way people think about AI – to elevate their mental model of it 

from that of a tool to that of a collaborator – we must do two things: promote 

examples of novel use cases, and imbue the AI with the language and characteristics 

of a partner, not a tool. 

A tool asks, “What can I do for you?” A partner asks, “What are you trying to 

accomplish, and what are your goals?” It thinks big picture and asks big questions. 

Collaborative AI (partner) steps into the creative process early on, during the 

inspiration & ideation stage, and helps the user better understand and conceptualize 

what they want and what they are willing to share, not just how to get it. 

2. Why Trust Matters for Mental Models of AI 

Forging a partnership between users and AI will not emerge overnight. Users are 

accustomed to a one-directional relationship with software, where they operate the 

tool and the tool returns results. This interaction type undergirded most software 

production and computer uses since the graphical user interface was developed in 

1975.  

Re-orienting users’ mental models towards collaboration requires the 

construction of a relationship that goes two directions, where control is ultimately 

shared. An essential condition for this transition is the development of user trust in 

AI. Our mental model findings suggest that users are beginning to approach AI in a 

comparatively new form. Unlike traditional tools, which require constant and careful 

supervision, AI has the potential to act autonomously. This autonomous action can 

be a great convenience in that it frees up time by completing rote tasks, like 

responding to emails or making online purchases. But it also has potentially negative 
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effects, especially if the AI errs in completing its functions. Trust in AI is necessary 

for the construction of a real partnership.  

Building trust with technology is a tenuous process. Take Replika, the AI 

companion platform, as an example. In early March 2023, Replika users noticed that 

the tenor and quality of their conversations with the technology began to change 

(Replika n.d.). Due to safety and privacy concerns, senior leadership at the company 

decided to scale back the range of topics that users could discuss with their AI 

companions. For people who had grown to rely on their AIs, the change was 

catastrophic. One 40-year-old musician told a reporter that the modifications “felt 

like a gut punch (Verma 2023).” In Reddit forums created for users to share 

complaints about the change, volunteer moderators posted the phone number for 

the suicide prevention hotline (Cole 20230. Users were distraught.  

The AIs, however, were fine. Without a theory of mind to recognize that users 

might be perceiving them differently, or the ability to see the relationships as 

voluntary (AIs can’t refuse to be your friend), the systems literally could not have 

cared less – or more. In fact, these Replika avatars were structurally incapable of 

caring because what their users interpreted as signs of love and attraction were 

actually just statistically generated responses to text queries. What this case so sharply 

shows is the fundamental imbalance humans confront when using AI. Trusted 

relationships are so valuable because, in order to form them, we necessarily expose 

ourselves to being disappointed or even hurt. But as a machine, AI has no regard for 

its users, its makers, or itself – even if it’s able to convincingly pretend that it does. 

AI agents represent a step change from past innovations in computing, like the 

graphical user interface (GUI) or earlier applications of machine learning. AI systems 

based on large language models invite users to build trust via natural language, which 

mimics how users build trust with one another. These LLM systems were the first to 

pass the vaunted Turing Test and can regularly produce content indistinguishable 

from humans. This blurring of human and machine capabilities demands a second 

look at the problem of trust-building. 

Trust has become perhaps the most important challenge for HCAI research and 

product development – in particular, how to design AI systems in ways that can 

solicit user trust over time. Trust matters because AIs are becoming more capable 

and agentic, and will depend on user willingness to grant the AIs permission to act 

on their behalf. LLMs – by virtue of their conversational fluency – also introduce 

some of the vagaries of language that result in uncertainty, therefore breaking 

traditional models of trust in computing. In traditional HCI, when a machine does 

not respond to a command, something is broken. With AI, this only means that we 

need a different way to get our point across. Trust lies at the heart of HCAI as a 
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particularly wicked problem: something that is both crucial to develop, yet much 

more difficult to achieve than in previous computing paradigms. 

Recent literature on trust-building with AI systems has explored ways that 

confidence might be established gradually over multiple interactions. Major areas of 

focus include how AI systems present themselves to people (transparency, 

explainability, deference and socially-predictable personas) as well as how they 

perform (giving consistent and accurate results) (Chan et al. 2024; Weitz et al. 2019; 

Upadhyaya and Galizzi 2023). But the Replika case above reveals a much deeper 

problem for human trust in AI that with few exceptions, the field has not yet 

grappled with (Ryan 2020). There is a deep accountability imbalance between 

humans and AIs: As much as AIs might model human personality, we know that it 

does not really have anything at stake in our interactions or face meaningful 

consequences for breaking our trust.  

Between humans, trust is basically a unit of social currency that helps reduce the 

cost and cognitive load of interpersonal transactions (Zak and Knack 2021). First, 

trust both requires and ensures predictability: the confidence that people will act as 

agreed and expected. Indeed, the experience of trust is quite straightforwardly a 

prediction of behavior. But it also works because we know there are consequences for 

violating trust: social or emotional costs paid by breaking agreements or acting in 

ways that are misanthropic or untrustworthy. It is increasingly clear that AI systems 

can demonstrate predictability. But will they ever overcome users’ awareness that 

they are machines, with nothing meaningful at stake? 

When it comes to consequences and accountability, there is a chasm between 

humans and AI systems that’s not so easily bridged through better interaction design 

(Johnson 2014). AI can’t incur real costs, experience guilt, or feel shame. So how can 

people ever really trust something with so little to lose?  

2.1 Predictability Is Necessary for Human-AI Trust, But It’s No Longer 

Sufficient 

Although we take it for granted in many of our human relationships, 

predictability is an essential component of trust. In many ways, it is the core 

prerequisite. We trust others when we have confidence that they’ll do what they say 

and behave in ways that fit our general expectations. This allows us not to worry, but 

to develop a generalized mental model of how a person will act under similar future 

circumstances, and plan accordingly. Norms around acting predictably are enforced 

by social sanction and emotions like guilt and shame. We also gain practical benefits 
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from social predictability. Because there are consequences for acting erratically or in 

ways that break our earlier commitments, the amount of attention needed to monitor 

important relationships is lessened. 

It’s this dimension of trust that computing researchers have been long focused 

on trying to reproduce in our interactions with technology. In classical HCI, trust is 

often framed as predictability; sometimes the two notions are implicitly taken to be 

synonymous. For the most part, designers and scholars have been focused on trust 

as the product of “predictable execution,” that is, user confidence that similar inputs 

will always yield the same outputs. In one of the earliest and most important 

statements of this view, Bonnie Muir contended in 1987 that “the growth of trust” in 

a computer system “will depend on the human's ability to estimate the predictability 

of the machine’s behaviors (Muir 1987).” Much of the power of predictability 

revolves around the setting and maintenance of expectations. Hoffman et al. 

underscored the role of predictable behavior when testing new approaches to 

explainable AI (XAI) systems (Hoffman 2021). When the system does what users 

expect it to do, they grow more comfortable with delegating tasks to it. This view 

(which remains extremely influential for how the industry approaches trust-building 

with AI) holds that after enough engagement and sufficient delivery of reliable 

results, users will judge the technology dependable and trustworthy – and continue 

to engage with it.  

Another way that predictability has been applied to AI has to do with personality 

– and in particular, the ability of AI systems to model stable, consistent, and helpful 

personas over time. LLM-based AI chatbots are already demonstrating their ability to 

perform this kind of predictability rather convincingly. ChatGPT uses first-person 

“I” pronouns when answering questions, invites you to give it a name, and uses 

discursive cues that mimic human behavior. Other products like character.ai go 

further, allowing users to customize the chatbot’s personality and mannerisms 

(character.ai n.d.). In a recent conversation, journalist Ezra Klein and AI 

commentator and University of Pennsylvania professor Ethan Mollick noted that 

different tentpole AI products are adopting relatively stable (and distinct) 

personalities: Anthropic’s Claude feels more literary and intellectual, OpenAI’s 

ChatGPT a “workhorse,” Google’s Gemini more earnest and helpful (Klein 2024). 

These AI product personalities and affinities are likely to grow even more salient as 

time goes on. Conserving a similar persona over time, AIs are helping people know 

what to expect rather than “starting from scratch” in each interaction.  

Yet as the AI ethics researcher Mark Ryan has argued, this is perhaps not quite 

trust in AI so much as confidence in its reliability and predictability (Ryan 2020). 

With traditional computing systems, this was sufficient. But AI’s ability to model 
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humanlike cognition and language, to say nothing of its increasing potential to take 

autonomous action, sets the bar much higher. If we are engaging with AI in a more 

humanlike way through language, our full human definitions of trust are engaged 

– and this requires not just predictability, but consequences. Stakes are a necessary 

condition for trust. Without them, users are deterred from delegating tasks to AI, 

which shortchanges AI’s full potential as a cognitive agent.  

2.2 Interaction Design Alone Can’t Bridge the Accountability Gap – We 

Need Real Costs 

Because AI cues its users into trusting it via language, the most obvious place to 

start is with interaction design. If the main problem for trust is that people feel the 

technology will not face any meaningful costs for betraying them, and that it has 

nothing to lose, can AIs be designed to convince them otherwise? Much HCI work 

on human-AI trust has approached it through the lens of interaction design. In this 

view, making adjustments around tone and personality (deferential, helpful, formal 

or informal) as well as the conversational mechanics (turn-taking, asking for 

clarification or additional information) can boost likeability and feelings of affinity 

with an AI system, making it easier for people to trust (Zhou et al 2019; Rheu et al 

2021).  

How, then, might we use interaction design to convey to users that AI systems 

are also bound by social cost and a recognition of potential consequences? One 

option involves acknowledging and explaining errors. AI systems are still prone to 

hallucination, which damages trust by violating user expectations for predictability 

and reliability. There are also potential costs here (e.g. reputational, professional) that 

are currently born entirely by humans and not at all by AIs – explaining why AI 

insurance is on the rise (El Antoury 2023). There may be value in designing AIs that 

respond to this kind of error not just by breezily offering a new answer, or a rote 

apology – but rather pause to reflect on the nature of the mistake and offer users an 

explanation of what might have gone wrong and why. We heard from many of our 

participants a desire for AI to reckon more explicitly with its limitations, and play less 

at perfection.  

When AI systems acknowledge and explain their errors, they are helping to 

create and strengthen the kind of norms that are required for trust (Cropanzano and 

Mitchell 2005). We know from sociology and anthropology, for instance, that 

apologizing and so acknowledging norm violations brings the community’s attention 

to the broken rule (Garfinkel 2023). When an AI system explains why it made a 
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mistake, people do learn more about how the AI works, but it also reaffirms that this 

is a relationship undergirded by norms that both parties agree are worth upholding. 

These moments of error and explanation can be further opportunities for AI systems 

to clarify the expectations that people have for them, and understand in which ways 

they may not be meeting them. These expectations may extend beyond accuracy or 

truth to qualities like politeness, the desire (and ability) to learn about the user, or a 

tendency to grow more casual and familiar over time.  

Norms are crucial for human trust-building (and now for human-AI trust) 

because they help us know when social costs or consequences can be fairly expected 

and imposed – in other words, they give us a rationale for accountability (Bicchieri 

2014). As people’s interaction with AI systems become increasingly relational, other 

human norms that shape our willingness to trust and collaborate with others may 

come into play with AIs (Bercovitz 2006). These may include not just truth, but 

other qualities like reciprocity, transparency, fairness, and equality (Whitman 2021).  

Another way to convey an understanding of costs at the discursive or 

interactional level might involve having AI systems adopt the language of investment. 

For instance, when a user uploads documents or private information to Gemini and 

starts asking questions about them, Gemini could acknowledge that by sharing their 

goals and data with the AI, they are effectively buying a stake in the eventual output. 

Reciprocally, Gemini might be able to clarify that it also has a stake in the interaction 

going well: it (and Google) might lose a user if the result is unsatisfactory or wrong, 

thus forfeiting its own investment. In this way, AI systems might convey that they 

also have something to lose.  

But none of these interaction design solutions are sufficient for the problem 

we’ve laid out above, which is that people know (however sophisticated the 

modeling) that AIs do not ultimately face meaningful social costs for their behavior, 

and are not bound by the same kinds of consequences that help us trust one another. 

They present the illusion of an AI that is invested, or that knows it has done wrong – 

but they don’t represent actual costs. And people are able to recognize this. Across 

our research, we heard from many participants that AI expressions of strong feeling 

often rang false, because they knew that these were machines without lived, 

embodied experience of the world. There is a risk that modeling a sense of care 

around social costs (e.g. an AI that expresses guilt, shame, or regret around the 

chance of violating a user’s trust) might be seen as insincere or fake instead of 

convincing. Essentially, interaction design solutions relate to the presentation or 

performance of AI, but the accountability imbalance is structural and consequential – 

AIs can’t quite talk their way past it. No amount of explanation will suffice.  
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Ultimately, we will need AI systems that have internal incentives and rules that 

guide them towards ensuring their own trustworthiness. Given that AIs increasingly 

have the ability to optimize themselves for different contexts, we might consider the 

concept of a trust scorecard. Users could indicate their level of trust in AI at different 

points over time, and AIs might be designed to monitor these criteria, and given the 

goal of earning a higher trust score. Inaccurate information, offensive content, or 

errors and omissions would result in a decreased score – while helpful responses or 

successfully completed acts of delegation would bolster trust. Something like an 

internal scoring system could help unlock trust in a way that would be more 

convincing to users, and clarify (building on insights from XAI) that this AI system 

does, in fact, have internal incentives to uphold their trust rather than simply 

predicting tokens. 

For all their successful modeling of humanlike qualities, AI systems are not 

moral agents like humans and are not accountable in the same way. This inhibits 

trust-building. Until we take a fuller and more socially mediated view of how humans 

trust one another, and establish alternative ways of imposing costs on AI systems for 

bad behavior, people will continue to feel that their trust in AI is limited, conditional, 

and precarious.  
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