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This paper establishes a framework and toolkit for designing Generative Artificial Intelligence 

(genAI) that address foundational challenges of these technologies and reframe the problem-solution 

space. The stakes are high for human-centered solutions: genAI is rapidly disrupting existing 

markets with technologies that exhibit increasingly complex and emergent abilities, and accelerate 

scale, cognitive offloading, and distributed cognition. The Problem-Solution Symbiosis framework 

and toolkit extends, rather than displaces, human cognition, including tools for envisioning, problem 

(re)framing and selection, interdisciplinary collaboration, and the alignment of stakeholder needs 

with the strengths of a genAI system. Applying the toolkit helps us guide the development of useful, 

desirable genAI by building intuition about system capabilities, developing a systemic understanding 

of emerging problem spaces, and using a matrix to identify if and when to offload tasks to the 

system. The framework is informed by systems theory, frame analysis, human-computer interaction 

research on current AI design approaches, and analogous approaches from spatial computing design 

research. 

Introduction 

ChatGPT, Open AI’s chatbot, reached 100 million monthly active users within 

two months of its November 2022 launch, making it the fastest-growing consumer 

application in history (Hu 2023). This milestone is widely seen as a breakthrough 

moment for generative AI (genAI), a class of machine learning (ML) that generates 

text, image or sound output, based on user input of the same modalities (Google 

2024). Countless companies across sectors, industries and geographies have since 

integrated genAI into their offerings, optimizing existing foundation models (i.e., models 

trained on a wide variety of unlabeled data that can be used for a broad range of 

tasks, as Murphy (2022) explains) or training new models for their use cases. 

Furthermore, a majority of senior executives across industries agree that genAI will 

“substantially disrupt” their industry over the next five years (MIT Technology 

Review Insights 2024). 

Business leaders seek to “ride the wave” of this disruptive technology 

(Christensen and Bower 1995), pushing for “AI-first strategy” (Acar 2024). This 

push results in the application of genAI across use cases, regardless of whether the 

technology is well-suited to solve for the target audience’s needs. Coupled with 

unique aspects of genAI technology that we will subsequently discuss, this push 



creates new challenges for ethnography practitioners seeking to guide organizations 

towards building technology that is useful and desirable for people. 

This paper seeks to provide ethnography practitioners with guidance on how to 

“ride the wave” of genAI, especially given the rapidly-evolving, emergent genAI 

solutions driving organizational strategy. We will begin with an examination of the 

unique challenges genAI presents for developing human-centered solutions and 

discuss genAI’s potential to perform increasingly complex cognitive tasks, 

concluding that genAI urgently needs ethnography to build solutions that think with 

us, rather than for us. We then examine how teams currently design genAI systems, 

and discuss challenges and shortcomings of existing approaches to problem framing 

for genAI projects (Yildirim and Pushkarna et al. 2023; Yildirim and Oh et al. 2023), 

grounded in the practice of understanding and generating solutions for existing 

problems. 

We posit that current approaches to guide the development of human-centered 

technology do not address a foundational challenge. Namely, genAI is a solution that 

unlocks new problem spaces, whereas current approaches focus on solving for 

existing problem spaces. We examine the reasoning mechanisms behind human-

centered practitioners’ current approaches to problem framing, and the tension 

between this framing and genAI’s solution-first growth. We then offer a new 

framework to address the foundational challenge, helping reframe the interplay 

between problem and solution space to align stakeholders’ needs with strengths of a 

genAI system. We offer three tools that follow from the framework, which 

practitioners can use to help teams build useful, desirable genAI solutions that think 

with us, not for us. 

Why GenAI Needs Ethnography 

There are two unique characteristics of genAI systems that simultaneously make 

human-centered solution development challenging, while also creating the potential 

for powerful – and potentially harmful – capabilities. First, with each new generation 

of foundation model, it becomes increasingly difficult to anticipate the system’s 

behaviors a priori without ample hands-on experimentation. This challenge is rooted 

in three genAI system capabilities: scale, homogenization and emergence (Bommasani et al. 

2021, De Paula et al. 2023; see Endnote 1 for further details). 

Scale enables models to ingest massive amounts of data. Homogenization 

enables models to adapt to multiple tasks, modalities and disciplines, obviating the 

need to build separate models for each function. Emergence enables models to 

exhibit unprecedented and unexpected capabilities. For instance, when engineers 
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make a small change to one part of the model to better solve certain types of 

problems (e.g., math problems), new behaviors emerge as a result of the system’s 

complexity (Klein 2024). These changes are not pre-programmed or trained into the 

model. The system may also “perceive” patterns that are not there (i.e., 

hallucinations), leading to unreliable output. Hands-on experimentation with genAI 

models has been proposed as an approach to develop intuition about the solutions’ 

vast and often unpredictable capabilities (e.g., Mollick 2023, Walter 2024). 

Second, as genAI systems’ capabilities rapidly expand, so to do the range and 

complexity of tasks we can perform using these tools, and by definition, the potential 

problems that the technology could be applied to solve. We can examine ChatGPT’s 

evolution as a case study (Open AI 2024a). The initial foundation model, GPT-3.5, 

was capable of natural language understanding and generation, with the ability to 

maintain context within shorter conversations. GPT-4, introduced in March 2023, 

offered more advanced problem-solving skills and more reliable responses, could 

retain context over extended conversations, and included multimodal abilities (i.e., 

processing and generating a range of data types beyond text, such as images and 

audio). GPT-4o, introduced in May 2024, honed its multimodal capabilities and 

added real-time functionality, with latencies comparable to human conversational 

turn-taking (Open AI 2024b, Stivers et al. 2009). This tool is not only capable of 

advanced cognitive tasks (e.g., thinking through a math problem), but also the ability 

to carry on a conversation approaching human capabilities and adopt a personality of 

the user’s choosing. 

Looking ahead, the technology industry widely accepts that artificial general 

intelligence (AGI) – roughly defined as “AI systems that are generally smarter than 

humans” (Open AI 2023) – is inevitable (Dilmegani 2024). Industry leader Open AI 

states, “as our systems get closer to AGI, we are becoming increasingly cautious with 

the creation and deployment of our models”, indicating movement towards AGI as 

an end goal (Open AI 2023). Teams building genAI systems require ethnographers’ 

guidance, not only for applying genAI where it is useful, but also extending, rather 

than replacing, human cognition in ways that are desirable to people using the 

technology. This requirement is especially urgent, given genAI’s exponential, 

worldwide growth and evolution (McKinsey and Company 2023). 

One could counter-argue that new technology has always enabled some amount 

of cognitive offloading (Risko and Gilbert 2016), enabling distributed cognition from us to 

our technology tools (e.g., Hutchins and Klausen 1996). For instance, outsourcing 

navigation in a familiar city to Google Maps, or using your phone’s calculator to 

calculate a tip at a restaurant. We posit that genAI is already shifting us into a new 

realm of cognitive offloading given its increasingly advanced capabilities. 
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Ethnographers have the potential to help teams navigate questions about how much 

of our executive function we wish to distribute to a genAI system, and under what 

circumstances. 

It is also important to highlight that the data on which genAI models are built 

can reflect cultural, social, ableist, gender, racial, ethnic and/or economic trauma 

(Sampson 2023), harming those who use genAI tools. For instance, Open AI’s 

DALL-E 2 image generator showed people of color when prompted for images of 

prisoners, or exclusively white people when prompted for images of CEOs (Johnson 

2022). Humans are also susceptible to automation bias, in which we tend to favor 

information from automated systems – even to the point of ignoring correct 

information from non-automated sources (Sampson 2023). This is particularly 

problematic given genAI’s emergent behavior and potential for hallucination. 

Best practices have begun to emerge for mitigating genAI’s harm and bias risks, 

such as organizations establishing, a priori, what content the model will not generate, 

devising harms modeling scenarios, implementing adversarial testing, and heightened 

model performance monitoring. These approaches are well-documented in both the 

EPIC community (e.g., Sampson 2023; De Paula et al. 2023) and the broader ML 

community (e.g., Gallegos et al. 2023), and are therefore not a focus of the current 

paper. 

Designing GenAI Systems: Current Approaches and 

Challenges 

Ethnography practitioners have already been engaging with the development of 

genAI systems. Research on this engagement provides evidence that designing for 

complex, emerging ML systems like genAI presents three unique challenges (Yang et 

al. 2020). First, familiar user-centered design (UCD) approaches (e.g., sketching, and 

subsequently gathering feedback on, a low fidelity prototype of a user interaction, or 

conducting a “Wizard of Oz” evaluation; Klemmer 2002) have limited applicability, 

given the emergent nature of the genAI models’ behavior. Relatedly, teams typically 

begin the design process with a solution in mind or in hand. If a team has the 

resources to train a foundation model from scratch, they are still likely seeking to 

“ride the wave” of genAI and know they want to explore using this specific 

technology for an application. More likely, the team is seeking to customize (e.g., 

fine-tune) an existing foundation model, meaning that there is a fully-fledged 

solution (i.e., foundation model) already available that the team is building from. 

Early promising approaches to address these challenges include the development 

of prototyping tools that require minimal coding expertise, allowing practitioners 
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across backgrounds to experiment with AI and data (e.g., Carney et al. 2020). Teams 

have also reported success with regular, rapid experimentation with the technology 

solution, including a tight collaboration loop between product teams and engineers 

(e.g., ML engineers, data scientists; Yildirim and Oh et al. 2023, Walter 2024). 

This experimentation approach overlaps with the second challenge – namely, 

genAI requires adaptations to how cross-functional teams collaborate – specifically, 

how product teams (e.g., ethnography practitioners, designers, product managers) 

and engineers building and/or customizing the foundation models (e.g., ML 

engineers, research scientists) work together. Members across teams have different 

ways of knowing (Hoy et al. 2023), including specialized language and workflows. 

Disconnects can quickly become amplified given the speed at which genAI 

technology develops. 

Promising approaches to remedy these disconnects include ethnography 

practitioners and other product team members sensitizing ML engineers to user 

needs (Zdanowska and Taylor 2022) – for instance, using visuals and other boundary 

objects to help align cross-functional partners (Lee 2007, Star and Friesemer 1989), 

and close cross-functional collaboration between ML engineers and the product 

team to identify system capabilities (Yang et al. 2020). Some examples include a list 

of synthesized system capabilities (Yildirim and Pushkarna et al. 2023; Yildirim and 

Oh et al. 2023) and regular, cross-functional experimentation with an in-

development system (Walter 2024). 

The third unique challenge is a central tenet of this paper: genAI solutions 

unlock new problem spaces, standing in contrast to the human-centered playbook of 

solving for existing problem spaces. We have seen symptoms of this foundational 

challenge documented in human-computer interaction literature on how teams 

design AI-based solutions, manifesting in struggles practitioners face early in the 

design process. 

Specifically, practitioners report needing support in “getting the right design” 

(Yildirim and Pushkarna et al. 2023; Yildirim and Oh et al. 2023). This phrase 

references Bill Buxton’s (2007) distinction between identifying that your design 

solution is solving a valuable problem for people, versus refining its usability after 

the solution and intended use case are identified (i.e., “getting the design right”). Existing 

AI design guidebooks (e.g., Google 2019, IBM 2022, Apple 2023) tend to focus on 

solution refinement, leaving practitioners seeking guidance on early-phase problem 

framing and reframing, and subsequent ideating on solutions that are both useful and 

technically feasible (Yildirim and Pushkarna et al. 2023; Yildirim and Oh et al. 2023). 

The following section examines the reasoning mechanisms behind this foundational 

challenge. 
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Foundational Challenge: Problem-first Versus Solution-

first Framing 

GenAI is an example of a disruptive technology entering the market, displacing 

established markets and generating new ones (Christensen and Bower 1995). A 

famous past example is when Apple introduced the iPhone in 2007. This technology 

solution displaced mobile phone incumbents like Blackberry and Nokia, but was also 

the necessary precursor for mobile-first use cases and related business models to 

emerge – for instance, sharing photos via social media (e.g., Instagram), ridesharing 

(e.g., Uber) and mobile payments (e.g., Venmo). In the same way, genAI is starting to 

displace technologies we considered mainstream even mere months ago, and create 

new ways of accomplishing tasks – for instance, moving from a search bar to a 

prompt bar. 

Disruptive technology – be it the iPhone or genAI systems – are, by definition, 

solutions that are then applied to use cases, rather than solutions developed around 

people’s needs. Per Paul Graham, co-founder of startup accelerator and venture 

capital firm Y Combinator, genAI is, “the exact opposite of a solution in search of a 

problem. It’s the solution to far more problems than its developers even knew 

existed” (Graham 2023). In other words, the solution (genAI) unlocks a number of 

problem spaces – all of the aspects related to understanding and defining a given 

problem people face (Simon 1969; Newell and Simon 1972). 

The dynamic of a solution (genAI) unlocking new problem spaces creates a 

tension between human-centered design practitioners and genAI. We argue that this 

tension is rooted in how we approach problem framing in genAI solution 

development. Dorst (2011) examined the reasoning patterns that experienced 

human-centered design practitioners use to frame design problems. The following 

equation typifies a successful design solution: 

 

𝑊𝐻𝐴𝑇 +  𝐻𝑂𝑊 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑉𝐴𝐿𝑈𝐸 

 

In this equation, “WHAT” is an object, service, or system. “HOW” is a known 

working principle that will help achieve the value one aspires to offer customers 

(“VALUE”). The “WHAT”, in combination with the “HOW”, should therefore 

yield the aspired “VALUE”. 

When presented with a complex design problem, experienced practitioners tend 

to encounter the following equation, in which the only “known” variable is the 

assumption about the value that they seek to achieve. The solution (“WHAT”) and 

the working principle (“HOW”) that achieves the value are unknown. 
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? ? ? + ? ? ?  𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑉𝐴𝐿𝑈𝐸 

 

This requires abductive reasoning, working backwards from value. Here, 

experienced practitioners adopt a frame, shown in square brackets in the equation 

below. The frame implies that applying a certain working principle (“HOW”) will 

lead to the aspired value. The frame leaves the solution (“WHAT”) to be 

determined. 

 

𝑊𝐻𝐴𝑇 + [𝐻𝑂𝑊 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑉𝐴𝐿𝑈𝐸] 
 

Before designing a solution, the practitioner tends to search for what Dorst calls 

the central paradox – the crux of what makes the problem difficult to solve. This is 

done through searching problem space (e.g., via ethnographic research, sense-

making). Once the practitioner has a clearer view of the central paradox, they 

progress to the solution (“WHAT”). 

In contrast, disruptive technology like genAI presents by beginning with the 

solution (“WHAT”), per the equation below: 

 

𝑊𝐻𝐴𝑇 + ? ? ?  𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 ? ? ? 

 

Taking a conventional framing approach in this context will leave the practitioner 

with two unknown variables (“HOW”, “VALUE”), untethered from the solution 

(“WHAT”). This may explain what is observed when human-centered practitioners 

working on an AI-based project report user needs that the AI system cannot help 

address (Yildirim and Oh et al. 2023). The current approach is, “What solution could 

unlock this value?”, whereas we need to reframe to, “What value could this solution 

unlock?”  

Adding further complexity to this reframing is that “WHAT” is difficult to 

define with specificity, due to genAI’s emergent properties. Teams must 

acknowledge this uncertainty, treating the potential problems that a genAI solution is 

uniquely positioned to solve as a hypothesis. That said, there is evidence that 

grounding a cross-disciplinary team in a general inventory of AI system capabilities at 

the start of an ideation session can help the group generate ideas for applications that 

are both useful and technically feasible (Yildirim and Oh et al. 2023). In this same 

study, a traditional UCD approach to brainstorming, which starts strictly from 

problem space, led to generating ideas that were constrained both in usefulness and 

technical feasibility. Even ideas that were viewed as high value to end users required 
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extremely high system accuracy (e.g., predicting sedation dose for ventilated patients 

in an intensive care unit, Yildirim and Oh et al. 2023). 

This examination of problem framing mechanisms highlights the tension 

between the current human-centered playbook and the solution-first framing that 

disruptive technology dictates. The subsequent section proposes a new framework to 

help solve for this tension, and offer a path forward to align an understanding of a 

genAI system’s capabilities (i.e., solution space) and the needs of potential 

stakeholders of this system (i.e., problem space). 

New Foundations: The Problem-Solution Symbiosis 

Framework 

We offer the Problem-Solution Symbiosis (PSS) framework to help model 

the interplay between problem and solution space when building genAI solutions 

(Figure 1). We have previously demonstrated the dominance of solution space when 

working with disruptive technology, and how this can disrupt application of 

traditional problem framing if we assume problem and solution space are expanding 

in sequence, rather than in parallel. The PSS framework models this co-existence of 

problem and solution space. The arrows represent touchpoints at which each space 

can symbiotically inform and evolve the other. For instance, taking inventory of 

system capabilities can influence how we frame problem space (i.e., “what value 

could this solution unlock?” is predicated by an understanding of what the solution 

can do), and how subsequent work to understand problem space (e.g., ethnography) 

can inform development of the genAI system. 

 

 

Figure 1. Problem-Solution Symbiosis (PSS) Framework. The solid purple line represents problem space. The dotted 
orange line represents solution space. The interplay of the arrows represents the symbiosis of problem and solution space 

as a team works towards launching a genAI solution. The arrows represent touchpoints at which each space can 
symbiotically inform and evolve the other. © Sendfull, LLC 
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As a function of time (i.e., going from left to right in Figure 1), the team 

developing the genAI solution can converge on a useful, desirable and feasible 

solution, mirroring traditional conceptualization of “controlled convergence” on a 

solution, such as those espoused by Pugh (1991) and Cross (1994). This convergence 

is typically marked by a product launch or other significant milestone. This paper 

focuses on early-stage framing and subsequent ideation, and therefore does not detail 

processes in later-stage or post-launch development. We encourage teams building 

genAI solutions to continue learning and iterating following product launch. 

We posit that ethnography practitioners are well-situated to orchestrate the 

symbiosis of problem and solution space for genAI development. This orchestration 

requires the ethnographer’s expertise to build coalitions between different 

perspectives between cross-functional team members (Hasbrouck, Scull and DiCarlo 

2016), with the goal of developing a useful, desirable genAI solution that can think 

with us (rather than for us). We will outline three tools the ethnography practitioner 

can use to facilitate this orchestration, drawing from the author’s lived experience in 

an analogous emerging technology space – zero-to-one spatial computing product 

development (Hutka 2021), systems theory, and human-computer interaction 

literature. 

Tool 1: Build Intuition About GenAI System Capabilities 

In the earlier examination of how teams currently approach genAI system design, 

we observed that regular, rapid experimentation with technology solutions, close 

collaboration between product and engineering teams, and practitioners 

experimenting with code-free prototyping tools were useful for understanding these 

emerging systems’ capabilities. This process is analogous to intuition building that the 

author has applied when leading design research for zero-to-one spatial computing 

launches with large cross-functional teams (e.g., Hutka 2021). 

Spatial computing describes a category of technologies in which computers 

understand people’s contexts, such as reading hand gestures, body position, and 

voice, and can add digital elements into the physical environment that can be 

manipulated similar to real-world objects (Bar-Zeev 2023). Augmented reality (AR), 

which overlays digital content on the physical environment, often falls under this 

category. One example of a spatial computing technology for which the author led 

design research is Adobe Aero, an AR authoring application that enables creative 

professionals to build digital spatial experiences (Hutka 2021). We outline different 

activities (solo and with a cross-functional team) that the author has led in spatial 

computing design research, and offer genAI analogs that ethnography practitioners 

can lead. 
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Table 1. Intuition Building Activities Used in Spatial Computing Design Research, and 
Corresponding GenAI Analogs 

Activity 
Participant(s) 

Spatial Computing 
Activity Description 

Benefit GenAI Analog 

Ethnography 

practitioner 

Spend time using existing 

technology tools (e.g., 

computing headsets like 

Magic Leap and HoloLens; 

AR mobile applications), for 

tasks related to the team’s 

product area. 

Develop intuition 

about the AR 

medium’s strengths 

and weaknesses in 

different form 

factors.  

Spend time using 

foundation models, such as 

GPT-4o and LLaMA, 

and/or existing products 

built on these models. Enter 

prompts related to tasks in 

your team’s product area. 

Try early versions of the 

product (i.e., “builds”) 

shared by engineers. 

Develop intuition 

about the in-

development 

product’s strengths 

and weaknesses; 

build shared 

language and 

rapport with 

engineers. 

Partner with engineers to 

understand what they are 

building; interact with in-

development systems as 

early as possible. 

Learn the basics of solution-

adjacent tools. For example, 

learn the basics of Blender, a 

3D authoring tool, which 

people frequently use to 

create content that will later 

be used in an AR experience 

built in a separate 

application. 

Develop intuition 

about the product 

ecosystem into 

which AR fits.  

If there is existing research 

on potential customers’ 

workflows, spend time in 

primary tools that are likely 

to be used alongside, or 

obviated by, a potential 

genAI solution.  

Ethnography 

practitioner and 

their cross-

functional team 

Human-centered playtesting 

sessions, in which cross-

functional teams were 

invited to use the latest 

build, with specific goals 

and/or tasks, akin to a 

usability test. Outcomes and 

next steps are documented. 

Foster cross-

disciplinary dialogue 

and awareness 

around solution 

strengths and 

weaknesses. 

Document 

observations and 

next steps.  

Conduct a playtest session 

where team members all try 

using their own prompts in 

a given generative AI 

system, as relevant to your 

team’s product area. 

 

Of these activities, cross-disciplinary sessions are uniquely valuable, due to their 

ability to organically build bridges across teams. For example, in such a session, one 
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team member outside of the engineering function says, “I noticed X was 

happening.” An engineer in the same session responds, sharing why X may occur 

from a technical perspective, and takes an action item to investigate offline. This 

exchange not only moves development forward, but fosters exposure to different 

ways of knowing. Note, this activity should not be used as a substitute for adversarial 

testing, in which a team systematically and deliberately introduces inputs designed to 

test how the model behaves if exploited by bad actors. 

Tool 2: Stakeholder Ecosystem Mapping to Understand Problem Space 

Designing for a complex, emergent system (e.g., any genAI-based solution) 

involves numerous stakeholders beyond the end user, all of whom hold different 

values and incentives (De Paula et al. 2023). For example, if building a genAI tool for 

internal enterprise employees, the ecosystem may include the end user, their 

collaborators, managers, information technology administrators, customers of the 

enterprise company, and the team developing the genAI tools (e.g., the ethnography 

practitioner, ML engineer, legal practitioner, business leaders). When exploring what 

problems a given genAI solution can solve for people, taking this holistic view can 

help teams reflect on assumptions about intended audience and motivations for 

building the system, in addition to generating new opportunity areas. 

In an analogous approach, the author has used such mapping to understand the 

dynamic nature of how designers in agencies collaborate on spatial computing 

projects. Primary research was conducted in the form of in-depth interviews, starting 

with end users (e.g., designers), to learn about existing goals, behaviors, workflows 

and collaborators. 

Through snowball sampling, participants offered introductions to these 

collaborators when possible (e.g., creative directors, information technology 

managers, business leaders). The subsequent output of synthesis was a collaboration 

model, demonstrating how these stakeholders worked together, as well as the goals, 

values and pain points of each stakeholder. This stakeholder-sensitive approach 

provided the team with knowledge not only about the end user, but how upstream 

product adoption decisions were made. The outcome informed the go-to-market 

strategy, addressing upstream barriers to adoption faced by senior decision makers, 

as well as product requirements to meet the end users’ needs. This approach adapts 

the service design practice of service blueprinting (Shostack 1982), in which a team 

maps the interactions between all stakeholders of a system. This differs from a UCD 

approach, which would more narrowly focus on the end user of the system. 

The ethnography practitioner can take a similar approach on genAI projects. 

Following primary research to learn about the target audience, the ethnography 
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practitioner can map stakeholders, as well as their values and incentives. We 

recommend extending the aforementioned example to include the team building the 

genAI tool to promote reflexivity. For example, if a team is looking to fine-tune an 

existing foundation model to more effectively address customer service interactions 

for their company, they would consider: the customer (i.e., the end user; values: 

accuracy, efficiency; incentives: quickly resolve a problem); current customer service 

representatives (values: being able to focus on complex cases; incentives: skill 

development); business owners (values: cost reduction, scalability; incentives: 

increased profitability); internal product team (values: building useful tools; 

incentives: customer engagement and return use). This mapping exercise may reveal 

both opportunities for the product, but also expose risks (e.g., roles that genAI 

technology risks replacing) and new testable hypotheses for subsequent research. 

This activity also serves to bring interdisciplinary team members together, with the 

ethnography practitioner again serving as the “bridge” between disciplines. 

Tool 3: The Cognitive Offloading Matrix to Identify Which – If Any – 

Tasks to Offload to GenAI 

We previously posed the questions: how much of our executive function do we 

wish to delegate to a genAI system, and under what circumstances? To this end, we 

offer the Cognitive Offloading Matrix (Figure 2), which builds on human-computer 

interaction literature. The goal of this matrix is to help ethnography practitioners 

consider what cognitive tasks people may want to consider – or avoid – delegating to 

AI. While it can be applied within the context of current genAI solution 

development, it aims to serve as a durable tool as genAI capabilities increase and 

approach AGI. 

The matrix has two axes: Unique strengths of humans and genAI systems (x-

axis), and desirability of a given task (y-axis). The goal is to only leverage genAI 

systems for tasks that genAI is better equipped to solve for relative to people, and is 

something people want to offload. 

2024 EPIC Proceedings 122



 

 

 

Figure 2. Cognitive Offloading Matrix. The matrix includes Strengths on the x-axis (human strengths at left, genAI 
strengths at right), and Tasks on the y-axis (desirable tasks at top, undesirable tasks at bottom). Tasks that fall in the 

bottom right quadrant (i.e., are undesirable and leverage genAI strengths) are better candidates to delegate to genAI 
(marked in green). © Sendfull, LLC. 

To populate the x-axis, we will begin by examining a framework called the Fitts 

List (Fitts 1951), developed by psychologist and early human factors engineer, Paul 

Fitts. The Fitts List detailed the strengths of human versus machine capabilities. One 

example of human strengths is reacting to low-probability events, such as accidents 

(note how this activity is something at which machines, such as autonomous 

vehicles, remain poor). In contrast, machines excel at detecting stimuli beyond the 

capabilities of the human perceptual system, such as infrared detection (de Winter 

and Dodou 2011). Practitioners can refer to the People + AI Guidebook (Google 

2019) for a list of “when AI is probably better” and “when AI is probably not 

better” as a starting point, though we caution that the lists are not specific to genAI 

technology solutions, with their properties of scale, homogenization and emergence. 

Ethnography practitioners can adapt the Fitts List when working on genAI 

projects to identify potential areas where the technology can extend – rather than 

replace – human cognition. We can consider an example scenario in which a team is 

considering applying genAI to a music streaming tool. This activity can be done solo 

or in a workshop setting with a cross-functional team. 

In this example, let us assume that a strength of a given genAI system was 

generating large-scale, real-time personalized recommendation. Let us also assume 

that a team has established (e.g., as informed by ethnographic research) that a human 

strength is making recommendations based on cultural nuances or non-obvious 

connections. These strengths can be mapped in a table, as shown in Table 2. 
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Table 2. Example of Fitts List for a genAI Music Streaming Tool 

Human Strength(s) GenAI Strength(s) 

Making recommendations based on cultural 

nuances or non-obvious connections. 

Generating large-scale, real-time personalized 

recommendations. 

 

Populating the y-axis requires an understanding of a potential audience’s 

workflows. If there is no evidence on the audience’s workflows, this is cause for 

either engaging in primary research or treating tasks as hypotheses until otherwise 

investigated. This axis differentiates between desirable tasks and undesirable tasks to 

the potential audience. This concept is inspired by a survey investigating what 

activities on which people would like a robot’s help (Li et al. 2022), as part of a larger 

effort to develop a human-centered benchmark for robots with AI capabilities (i.e., 

“embodied AI”). Respondents were asked, “How much would you benefit if a robot did this 

for you?” (ibid., p.3). The highest-ranked responses were: “wash floor”, “clean 

bathroom” and “clean after a wild party.” The lowest-ranked responses were: “buy a 

ring”, “play squash” and “opening presents.” These results supported that people 

sought to remain engaged in pleasurable and/or meaningful tasks, and only sought to 

outsource laborious tasks to robots, if given the opportunity. 

We posit that these results offer relevant takeaways, when considering what 

problems to solve with a genAI system capable of increasingly complex “cognitive” 

capabilities. Considering the music streaming example. Let’s recall that in this 

scenario, ethnographic research revealed that amongst people who used current 

streaming services, creating and sharing custom playlists for loved ones was an 

enjoyable and valuable activity. While we may have determined from our previous 

Fitts List that genAI is highly capable of recommendations for such a playlist, we can 

safely infer that this is not something people wish to outsource (Figure 3). 
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Figure 3. While ‘Custom playlist creation for loved ones’ is something genAI is highly capable of, it is also a desirable 
task for people. It therefore falls into the upper right quadrant of the Cognitive Offloading Matrix, and is not a good 

candidate for offloading to a genAI system, as indicated by the red square. © Sendfull, LLC. 

Let us assume this same research study demonstrated that people want music to 

match their context, and that people are frustrated when the streaming service 

recommends the same low-energy music they want to hear when winding down in 

the evening, while embarking on an early-morning drive. Here, real-time generation 

plus contextual awareness could be something at which genAI excels. People are 

already open to algorithmically-generated playlists, and seek the added convenience 

of having music to match their context. This is a strong candidate for a “thinking” 

task to delegate to genAI (Figure 4). 

 

Figure 4. ‘Recommend music based on my context’ is something genAI is highly capable of, and a task people see as 
undesirable to perform themselves. It therefore falls into the lower right quadrant of the Cognitive Offloading Matrix, 

and is a good candidate for offloading to a genAI system, as indicated by the green square. © Sendfull, LLC. 
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General Discussion 

The PSS framework proposes that ethnography practitioners move beyond a 

UCD approach by working with solution space early in the design process, and 

simultaneously, exploring problem space via a systemic approach to map 

stakeholders’ values and incentives. This framework responds to observations that 

familiar UCD approaches often are of limited applicability in the development of 

genAI systems (e.g., Yildirim and Pushkarna et al. 2023; Yildirim and Oh et al. 2023), 

focused on how to identify and solve existing problems. 

We posit that there are two sub-themes to tease apart regarding the limitations of 

a UCD approach. The first is that genAI is distinguished by unique characteristics 

(e.g., speed of advancement, complex, emergent behavior, coupled with being a 

disruptive technology) and therefore requires an updated approach (e.g., the PSS 

framework, and corresponding toolkit). The second is a more general observation 

that human-centered practitioners need to move beyond UCD – an observation that 

extends beyond the development of genAI systems. For example, Chesluk and 

Youngblood (2023) proposed a shift towards user ecosystem thinking, applying a 

systems-sensitive approach to industry ethnography to understand a broader range of 

human subjects and settings than UCD traditionally considers. 

Forlizzi (2018) also advocated for moving beyond UCD to a more systemic 

approach. Forlizzi argues that we require stakeholder-centered design, accounting for 

“different entities interacting with and through products, services, and systems to 

achieve a desired outcome”; this is in contrast to designing “one thing for one 

person” (ibid., p. 1). The need for this shift beyond UCD approaches is a result of 

how computing technology has developed. In the earliest days of human-computer 

interaction, experts developed computer “programs” for themselves. Next came 

designing computers for others, as these machines became used in workplaces and 

homes. Consumer devices such as smartphones led to designing for entertainment 

and engagement, accelerating the development of user experience design. In the 

current age, we are building complex systems (genAI included) that require a 

systemic approach. The second tool proposed in this paper adopts this systemic view 

of problem space, grounded in this literature espousing a shift towards systematically 

building genAI solutions. 

We recognize that systemic approaches can be met with friction when applied in 

industry settings. Product teams are often familiar with UCD language and methods, 

and therefore hesitant to adopt a broader view (e.g., Chesluk and Youngblood 2023). 

However, we are cautiously optimistic that the challenges of designing useful, 

desirable human-centered AI can accelerate the adoptions of systems-level thinking. 
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Relatedly, growing awareness of genAI “hype” (e.g., Chowdhury 2024, invoking the 

Gartner hype cycle [Gartner n.d.]), and the pitfalls of indiscriminately applying an 

“AI-first strategy” (Acar 2024) may increase business leaders’ appetite for greater 

specificity around which problems are best suited for a genAI solution. The 

ethnography practitioner remains in a unique position to move human-centered AI 

forward given both their toolkits and mindsets, including the ability to build bridges 

between disciplines and perspectives. 

Conclusion 

Before generating new frameworks to guide human-centered development of 

genAI solutions, it is important to examine our foundations – for example, how we 

frame problems as human-centered practitioners, and identify foundational 

challenges associated with genAI development. Through this examination, we 

identified a foundational challenge, namely that current human-centered approaches 

focus on solving for existing problem spaces, and do not fully address the 

foundational challenge genAI presents – namely, a solution unlocking new problem 

spaces. 

To address this foundational challenge, this paper proposed the PSS framework 

to reframe the interplay between problem and solution space when building genAI 

solutions. Relatedly, we shared three corresponding tools that the ethnography 

practitioner is well-equipped to apply. These tools included approaches to building 

intuition about solution space (i.e., genAI system capabilities) and stakeholder 

ecosystem mapping to understand problem space, as well as the Cognitive 

Offloading Matrix, to help identify if and when to offload tasks to genAI. We posit 

this Matrix can be used as genAI systems become increasingly capable of advanced 

cognitive tasks. We invite ethnography practitioners to apply the framework and 

toolkit offered in this paper, and adapt them to their needs. There are also 

opportunities to explore the application of this framework and tools to other 

emerging technology applications beyond genAI, such as solutions built on robotics 

(e.g., embodied AI) and computer vision technology. 
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1. Scale, homogenization and emergence can be traced back to two techniques proposed in the 

seminal ML paper, Attention is All You Need (2017). These techniques were self-supervised learning, 

which enabled the ingestion of billions of data sources (e.g., documents) and multi-head self-attention, 

in which a ML model selectively chooses which input to pay attention to, rather than attending to 

each input equally (De Paula et al. 2023). These techniques scaffolded future genAI solutions like 

ChatGPT, and enabled scale, homogenization and emergence. 
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